U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL WEATHER SERVICE NATIONAL METEOROLOGICAL CENTER

OFFICE NOTE 356

DERIVATION AND SUGGESTED METHOD OF THE APPLICATION OF SIMPLIFIED RELATIONS FOR SURFACE FLUXES IN THE MEDIUM-RANGE FORECAST MODEL: UNSTABLE CASE

PAUL E. LONG, JR.

MARCH 1990

THIS IS AN UNREVIEWED MANUSCRIPT, PRIMARILY INTENDED FOR INFORMAL EXCHANGE OF INFORMATION AMONG NMC STAFF MEMBERS

I. <u>Introduction</u>

An economical technique is presented for solving the boundary layer equations that yield the surface fluxes of momentum, heat, and moisture for unstable conditions. The method is intended to replace the i terative scheme used in the National Meteorological Center's Medium Range Forecast model (MRF).

The MRF formulation uses Obukhov similarity theory which posits the existence of nondimensional 'universal' functions ($\mathcal{Q}_{\mathcal{M}}$, $\mathcal{Q}_{\mathcal{Q}}$) that are functions of only Z/L, where L is the Obukhov length. The $\mathcal{Q}_{\mathcal{M},\mathcal{H},\mathcal{Q}}$ functions give the nondimensional vertical shears of wind speed, potential temperature, and specific humidity:

$$\frac{RZ}{u_{*}} \frac{\partial U}{\partial Z} = Q_{M} (Z/L) \tag{1.1}$$

$$\frac{\hat{R}^{\frac{2}{2}}}{\Theta_{*}} \frac{\partial \Theta}{\partial Z} = \mathcal{O}_{H} (Z/L)$$
(1.2)

$$\frac{RZ}{9*} \frac{\partial g}{\partial Z} = \mathcal{Q}_{Q}(Z/L). \tag{1.3}$$

The use of the von Karman constant k (= 0.4) in (1.1, 2, 3) is merely historical and is not required by the Obukhov similarity theory. The turbulent scaling parameters u *, 0*, 6* have the same units as wind speed, potential temperature, and specific humidity and define the surface turbulent fluxes. That is,

$$\Theta_{\star} = -F_{\bullet}/\rho C_{b} u_{\star} \tag{1.5}$$

In these relations, $\bigcap_{M,H,Q}$ are the (surface) fluxes of momentum, heat, and humidity; T is the surface stress; ρ is the density of air; C_{ρ} is the specific heat of

air at constant pressure; χ is the latent heat of evaporation. Rewriting (1.1-6), we have,

$$F_{M} = -\rho U_{*}^{2} = -\rho (\beta z)^{2} P_{M}^{-2} \frac{\partial U}{\partial z}$$
 (1.7)

$$F_{H} = -\rho C_{\beta} U_{*} \theta_{*} = -\rho C_{\beta} (k_{z})^{2} (\varphi_{M} \varphi_{H})^{-1} \frac{\partial U}{\partial z} \frac{\partial \theta}{\partial z}$$
(1.8)

$$\mathcal{F}_{Q} = -\rho \mathcal{L} u_{*} g_{*} = -\rho \mathcal{L} (k_{z})^{2} (q_{M} q_{Q})^{-1} \frac{\partial U}{\partial z} \frac{\partial g}{\partial z} . \quad (1.9)$$

Many flux-profile relations have been proposed for $\mathcal{Q}_{M,H,\mathcal{Q}}$ (see, for example, Yaglom, 1977, for a survey). Most of the relations for the unstable case that have been used in numerical forecast or simulation models are of the form

$$Q_{M}(\S) = a_{M}(1-\alpha_{M}\S)^{-\S_{M}},$$
 (1.10)

$$\mathcal{Q}_{Q}(\xi) = \mathcal{Q}_{H}(\xi) = \alpha_{H}(1 - \alpha_{H} \xi)^{-\beta_{H}}. \tag{1.11}$$

The Businger et al. (1971) formulation is probably the most frequently used formulation in numerical forecast modeling. For the Businger relations, the relevant constants are: $\alpha_{M} = 1, \alpha_{H} = 0.74, \alpha_{M} = 15, \alpha_{H} = 9, \beta_{H}^{2} = \beta_{M} = 1/4$ The relations proposed earlier by Dyer (1967) use a $\alpha_{M,H} = 1, \alpha_{M,H} = 1.5, \beta_{M} = 0.275$ and $\beta_{H} = 0.55$. The MRF physics formulation uses the $\alpha_{M,H} = 1, \alpha_{M,H} = 16, \beta_{M} = \beta_{H}^{2} = 1/4$ proposed later by Dyer (1974) and Hicks (1976):

$$\Psi_{M}(\S) = (1-16\S)^{-\frac{1}{4}}$$
 (1.12)

$$\mathcal{Q}_{H}(\S) = (1 - 16\S)^{-1/2} = \mathcal{Q}_{\mathbb{Q}}(\S).$$
 (1.13)

From a numerical viewpoint, Dyer's original relations are cumbersome since they result in no known closed-form integrals of (2.14 - 17). These integrals are needed for the integrative solution for § that is required for the

computation of $\mathbb{F}_{M,H,Q}$ (see section II). On the otherhand, the selection of the Dyer-Hicks relations for the surface layer turbulent formulation is particularly fortunate, since the equality of $\alpha_M = \alpha_H$, $Q^2 = Q_M$, $\beta_M = \beta_H^2$ and $\alpha_M = \alpha_H = 1$ simplifies the solution for § compared to either Businger's or to Dyer's earlier formulation.

It must be recognized, however, that the precise values of $\mathcal{A}_{M,H}$, $\mathfrak{f}_{M,H}$ and $\mathfrak{a}_{M,H}$ are not known and are subject to controversy. For example, Dyer (1974), in a review of several flux-profile relationships, comments: "the results of Businger et al. (1971) remain a difficulty which calls for considerable clarification". In addition, Carl et al. used a composite of tower data to determine $\mathcal{C}_{M,H}(\S)$. Their results are,

$$Q_{M}(\S) \doteq (1-16\S)^{-\frac{1}{3}}$$
 (1.14)

$$\mathcal{C}_{H}(\S) \doteq 0.74(1-16\S)^{-1/4}$$
(1.15)

The Businger and Dyer-Hicks flux-profile laws stand in sharp contrast to the free-convection profile laws: the free-convection relations require that the turbulent fluxes become independent of wind shear for large $-\S$. This distinction is important since computational experience shows that the Businger-Dyer-Hicks solutions for \S , \curvearrowright and \curvearrowright can run out of control for progressively smaller wind shears, $> 0 / 2 \neq > 0$. We will return to this evidently important distinction in Section II, but for now we shall assume that (1.12-13) are correct for domains in which we shall apply them.

II. Solutions of the Flux-Profile Relations

A. General

In this section we develop some relations between $\S (= \frac{z}{L})$, the gradient Richardson number (R), and the bulk Richardson number (R_B). The bulk Richardson number (\$\mathbb{E}\$) used to determine \S . The surface fluxes can then be computed from \S .

We begin by subtituting (1.1, 2) into a defining relation for the Obukhov length,

$$L = \frac{\bar{\Theta}}{Rg} \quad U_{\star}^{2} \quad \Theta_{\star}^{-1} \quad . \tag{2.1}$$

$$K_{M} \sim 2.5 \left(\frac{9F_{H}}{\rho C_{s} \theta}\right)^{\frac{1}{3}} \left(R^{2}\right)^{\frac{1}{3}}$$
 (1.16)

Panofsky (1978) suggested that the limiting form of K_{μ} is

$$K_{H} \sim 1.5 \left(\frac{9 F_{H}}{\rho C_{b} \theta}\right)^{\frac{1}{3}} (RZ)^{\frac{1}{3}}$$
 (RZ) (1.17)

Eqs. (1.14), (1.16), and (1.17) are consistent with local free-convection, as is the Wyngaard, et al. (1978) comment that

$$\mathbb{Q}_{H}(\S) = 0.23(-\S)^{-1/3}$$
 (1.18)

fits the Kansas data (Wyngaard and Coté, 1971) about as well as the Businger profile in the domain $0.5 \leqslant -6 \leqslant 2$.

The result is

$$\mathcal{E} = \frac{\mathcal{Q}^2(\mathcal{E})}{\mathcal{Q}_{\mu}(\mathcal{E})} R, \qquad (2.2)$$

in which the gradient Richardson number R is defined by

$$R = \frac{9}{\theta} \frac{3\theta}{3\pi} / \left(\frac{3U}{3\pi}\right)^2. \tag{2.3}$$

The gradient Richardson number combined with the Dyer-Hicks flux-profile relations yields the simple result: for R, S<0

$$S = R. \tag{2.4}$$

This equality between R and § (for § < 0) is, unfortunately, of little practical value in numerical forecast models, such as the MRF, that have limited vertical resolution. In these models the local gradient Richardson

number cannot be computed with fidelity, and the bulk Richardson number is usually the best that can be done. The bulk Richardson number between two levels \mathbb{Z}_1 and \mathbb{Z}_2 is defined as

$$R_{\theta} = \frac{9}{9} \frac{h \Delta \theta}{V^2} . \tag{2.5}$$

In (2.5), g is the acceleration due to gravity; $\overline{\theta}$ is a representative (or average) potential temperature between \mathbb{Z}_1 and \mathbb{Z}_2 ; $\Delta \Theta = \Theta(\mathbb{Z}_2) - \Theta(\mathbb{Z}_1)$; $\mathbb{U} = \mathbb{U}(\mathbb{Z}_2) - \mathbb{U}(\mathbb{Z}_1)$; $\mathbb{h} = \mathbb{Z}_2 - \mathbb{Z}_1$. For modeling purposes, \mathbb{Z}_1 is usually the height of the first layer or the midpoint of the first layer. In either case we generally have $\mathbb{Z}_2 \to \mathbb{Z}_1 = \mathbb{Z}_2$; $\mathbb{h} = \mathbb{Z}_2 - \mathbb{Z}_1 = \mathbb{Z}_2 = \mathbb{Z}_1$.

Expressions for U and $\Delta\theta$ may be derived by combining (1.1, 2) and (1.4 -6),

$$U(z) = \frac{u_{*}}{R} \int_{z_{0}}^{z} \frac{dz'}{z'} \left(1 - u_{*} \frac{z'}{L}\right)^{-1/4}$$
 (2.6)

$$\Delta \theta = \frac{\theta_{*}}{R} \int_{Z_{0}}^{Z} \frac{dZ'}{Z'} \left(1 - \alpha \frac{Z'}{L}\right)^{-\frac{1}{2}}.$$
 (2.7)

The results of the integration of (2.6) and (2.7) are,

$$U(z) = \frac{1}{R} F_{M}(z/L; z_{o}/L)$$
(2.8)

$$\Delta \Theta = \frac{\Theta_{\star}}{R} F_{H}(\Xi/L; \Xi_{\bullet}/L)$$
(2.9)

for which we have,

$$F_{M}(Z/L; Z_{0}/L) = \ln \left[\frac{(R_{z}-1)(R_{0}+1)^{2}}{(R_{z}+1)(R_{0}-1)} \right]$$

$$+ \tan^{-1}R_{z} - \tan^{-1}R_{0}.$$

$$F_{H}(Z/L; Z_{0}/L) = \ln \left[\frac{(Q_{z}-1)(Q_{0}+1)}{(Q_{z}+1)(Q_{0}-1)} \right]$$
(2.11)

$$R_{z} = (1 - \alpha \frac{z}{L})^{1/4}$$
; $R_{o} = (1 - \alpha \frac{z_{o}}{L})^{1/4}$ (2.12 a,b)

$$Q_{z} = (1 - d^{z})^{\frac{1}{2}}$$
 ; $Q_{o} = (1 - d^{z})^{\frac{1}{2}}$ (2.13 a,b)

It is customary to express (2.8 - 13) in a somewhat different but otherwise equivalent form,

$$U = \underset{R}{\text{Lin}} \left[ln \underset{R}{\stackrel{?}{=}} - \underset{M}{\text{Th}} \left(\frac{2}{L}; \frac{7}{5} \cdot L \right) \right]; \qquad (2.14)$$

$$\Delta \theta = \frac{\theta_*}{R} \left[\ln \frac{Z}{Z_0} - \Psi_{H}(Z/L; Z_0/L) \right]; \qquad (2.15)$$

$$\Psi_{M} = \int_{z_{0}}^{z} \frac{dz'}{z'} \left[1 - \varrho_{M}(z'/L) \right]; \qquad (2.16)$$

$$\Upsilon_{H} = \int_{Z_{0}}^{Z} \frac{dZ'}{Z'} \left[1 - Q_{H}(Z'/E) \right]. \tag{2.17}$$

The functions $\Psi_{M,H}$ represent the deviation from near-neutrality: for conditions close to neutral, we have

The 'standard form' (2.14 - 7) for $\Delta \theta$ and U are more convenient to use than F_{M} , H. For conditions sufficiently close to neutral, an attempt to calculate F_{M} or F_{H} can lead to computational failure. This liability is not shared by the standard forms. The computational failure is caused by R_{o} and Q_{o} approaching unity for near-neutral conditions and small Z_{o} . With limited precision, $R_{\text{o}} = 1$ and $Q_{\text{o}} = 1$ can be erroneously computed as negative numbers with very small absolute values. This causes the arguments of the logarithmic functions to become large negative numbers, and the computations halts.

The transformation of $F_{M,H}$ to the standard form can be accomplished by manipulating (2.10, 11). By using some simple algebra, we have

$$\frac{(R_{z}-1)(R_{o}+1)^{2}}{(R_{z}+1)(R_{o}^{2}-1)}$$

$$= \frac{(R_{z}-1)(R_{o}+1)^{2}(R_{o}^{2}+1)}{(R_{z}+1)(R_{o}+1)^{2}(R_{o}^{2}+1)}$$

$$= \frac{(R_{z}^{4}-1)(R_{o}+1)^{2}(R_{o}^{2}+1)}{(R_{z}^{2}+1)(R_{z}+1)^{2}(R_{o}^{3}-1)}$$

$$-\frac{Z(1+R_0)^2(1+R_0^2)}{Z_0(1+R_2)^2(1+R_2^2)}$$
(2.18)

from which

$$T_{M} = \ln \left[\frac{(1+R_{z})^{2}(1+R_{z}^{2})}{(1+R_{o})^{2}(1+R_{o}^{2})} - 2 \tan^{-1}R_{o} + 2 \tan^{-1}R_{z} \right]$$

$$+ 2 \tan^{-1}R_{z}$$
(2.19)

follows. A similar restructuring of F yields

$$\Psi_{H} = 2 \ln \left(\frac{1+Q_{z}}{1+Q_{o}} \right). \tag{2.20}$$

Since the factors in $\Psi_{M,H}$ are all greater than unity, there is no danger of computational failure as is the case with $F_{M,H}$. The computation of Ξ/L from U, $\Delta\theta$, Ξ , and Ξ_o is more difficult than from $\Xi U/\Xi$ and $\Xi \theta/\Xi$. The relation involving the gradient Richardson number

$$\S = \frac{\mathbb{Q}_{\mathsf{m}}^{\mathsf{z}}(\S)}{\mathbb{Q}_{\mathsf{m}}(\S)} \, \beta$$

is replaced by

$$\S = \frac{F_{H}^{2}}{F_{H}} R_{B} = \frac{(2n \frac{2}{5} - \Psi_{H})^{2}}{(2.21)} R_{B}. \qquad (2.21)$$

Eq. (2.21) unfortunately yields no such simple relation as in (2.4) (i.e., \$=\$). For conditions close to neutral, however, $\Psi_{\rm M,H} \to 0$ and

$$\S \to \S_N \equiv R_B \ln \frac{z}{z_o}. \tag{2.22}$$

As $-R_B$ increases, $\Psi_{M,H}$ increase, and $\S \approx \S_N$ becomes increasingly inaccurate. Nevertheless, the near-neutral result $\S \approx \S_N$ is a reasonably accurate first approximation to (2.21) over a fairly wide range of R_B and Ξ_o .

To partially support this claim, we will examine the behavior of (2.21) for small values of $-\xi$. From the definitions of $\mathbb{Q}_{\mathbf{M},\mathbf{N}}$,

$$Q_{M} = (1 - \alpha_{M} S)^{-\frac{1}{4}},$$

$$Q_{H} = (1 - \alpha_{H} S)^{-\frac{1}{2}},$$

we have

$$Q_{M} = 1 + \frac{d_{M}}{\eta} g + O(g^{2});$$
(2.23)

and

$$F_{M} = \ln \frac{7}{2} + \frac{4}{4} (9 - 9) + O(9; 9);$$
 (2.25)

$$F_{H} = M_{\frac{7}{2}}^{\frac{7}{2}} + \frac{d_{H}}{2} \left(\S - \S_{0} \right) + O\left(\S^{2}, \S_{0}^{2} \right). \tag{2.26}$$

If we neglect & in comparison to & , (2.21) becomes,

$$S = (\ln \frac{2}{2} + \frac{d}{4} + \frac{g}{5})^{2} (\ln \frac{2}{2} + \frac{d}{4} + \frac{g}{5})^{-1} R_{B}$$

$$= R_{B} \ln \frac{2}{2} + \frac{1}{2} R_{B} (d_{M} - \alpha_{H}) S + O(S^{2}) \qquad (2.27)$$

$$= R_{B} \ln \frac{2}{2} + \frac{1}{2} (d_{M} - \alpha_{H}) R_{B}^{2} \ln \frac{2}{2} ,$$

as a first - order approximation. For the Businger profiles, $\alpha_{\rm M}=15$ and $\alpha_{\rm H}=9$, and $\alpha_{\rm M}-\alpha_{\rm H}=6$; for the Dyer-Hicks profiles, $\alpha_{\rm M}=\alpha_{\rm H}=16$ and $\alpha_{\rm M}-\alpha_{\rm H}=0$, thus, there is a fortuitous cancellation of the R_B^2 term. Table 1 compares $S_{\rm M}$ with the exact value of $S_{\rm M}$ for the two widely differing values $Z_{\rm O}=0.001$ m and $Z_{\rm O}=5.0$ We see that $S_{\rm M}$ is a close approximation to $S_{\rm M}$ for $C_{\rm M}=0.001$ m; $C_{\rm M}=0.001$ m; $C_{\rm M}=0.001$ m. We note that $C_{\rm M}=0.001$ systematically overestimates $C_{\rm M}=0.001$ amount that slowly increases with increasing $C_{\rm M}=0.001$ m.

The contributions of Ξ_t to Ψ are generally small; we can define $\Psi(\mathcal{H}_L)$ as

$$\Psi_{M,H} \equiv \lim_{Z_0 \to 0} \Psi_{M,H} (Z/L; Z_0/L)$$
(2.28)

-L	- §	- § (a)	- § ^(b)	- § (c)
10000	0.005	•500 - 2	.500 - 2	.500 - 2
5000	0.010	.100 - 1	.100 - 1	.100 - 2
1000	0.05	.500 - 1	.501 - 1	.501 - 1
500	0.10	.100	.100	.100
200	0.250	•250	.253	.252
100	0.50	•507	.511	.507
50	1.0	1.02	1.04	1.02
25	2.0	2.08	2.11	2.04
10	5.0	5.32	5.45	5,13
5	10.0	10.9	11.2	10.3
1	50.0	58.4	58.3	51.4

so that

$$\Psi_{\text{MJH}} \approx \Psi_{\text{MJH}}$$
 (2.29)

for most practical purposes. This approximation is standard in the boundary layer literature; it justifies the approximation,

$$g = R_B \frac{\left[\ln \frac{2}{5}, -\Psi_M(s)\right]^2}{\left[\ln \frac{2}{5}, -\Psi_H(s)\right]}$$
 (2.30)

The exact form is of course,

$$g = R_B \frac{[lm \stackrel{?}{=}, -Y_M(g) + Y_M(g_o)]^2}{[lm \stackrel{?}{=}, -Y_H(g) + Y_H(g_o)]}$$
 (2.31)

The latter expression is used in the current MRF.

B. Formulas for small -Z/L

Having affirmed the approximate equality of § and §, for $-\S_N < 0.5$, we shall verify that $\Psi_{\rm M,H}$ can be fairly well approximated for $0 < -\S < 0.5$ by

$$\psi \doteq \frac{(a_0 + a_1 \$)}{1 + b_1 \$} \$.$$
(2.32)

To determine the values of a_0 , a_1 , b_1 we expand (2.32) in powers of :

$$\psi = (a_0 \$ + a_1 \$^2) (1 + b \$)^{-1}$$

$$\approx (a_0 \$ + a_1 \$^2) (1 - b \$ + b^2 \$^2)$$

$$\approx a_0 \S + (a_1 - a_0 b_1) \S^2 + (a_0 b_1^2 - a_1 b_1) \S^3 .$$
(2.33)

The expansion of $orall_{\mathsf{M}}^{\mathsf{T}}$ to second order yields

$$Y_{M} = ln \frac{2}{5} - F_{M} = ln \frac{2}{5} - \int_{50}^{5} \frac{dg'}{g'} (1 - 16g')^{-1/4}$$

$$= \ln \frac{z}{z} - \int_{\S_0}^{\S} \frac{d\S'}{\S'} \left[1 + 4\S' + 40\S'^2 + O(\S'^3) \right]$$

(2.34)

in which \S_o and $O(\S^3)$ have been neglected. A term-by-term comparison of (2.33) with (2.34) shows that $\alpha_o = -4$ and $\alpha_o b_1 - \alpha_1 = 20$. The coefficients α_1 , b_1 can be determined by expanding Ψ_M to the \S^3 term, thereby producing a Padé approximation (Bender and Orszag, 1978). We choose, however, to determine α_1 , b_1 by forcing collocation with

 Ψ_{M} at $\S = -0.5$: Ψ_{M} (-0.5) = 0.793358 . The result is

$$\Psi_{M}(\xi) = \frac{-4\xi + 5.140\xi^{2}}{1 - 6.285\xi}$$
 $0 \le -\xi \le 0.5$. (2.35)

A similar calculation for $\psi_{H}(-0.5) = 1.38629$ gives,

$$\Psi_{H}(\xi) \doteq \frac{-8\xi + 9.563\xi^{2}}{1 - 7.195\xi} \quad 0 \ \langle -\xi \rangle = 0.5 \quad (2.36)$$

Eqs. (2.35, 36) approximate $\Psi_{\text{M},\text{H}}$ (§) for $0 \leqslant - \S \leqslant 0.5$ within about 10%. Further accuracy can be had, although it is probably not needed, by forcing higher-order collocation. By requiring collocation at $-\S = 0$, 0.05,0.10, 0.25 and .50, we can derive the approximations

$$\Psi_{M}(\xi) = \frac{(-3.9747 + 12.32185)}{1 - 7.7549 + 6.04135^{2}} \xi$$
, (2.37)

and

$$\Psi_{H}(\S) = \frac{(-7.9409 + 24.7496 \S)}{(1-8.7051 \S + 7.8993 \S^{2})} \S. \quad (2.38)$$

In computing $F_{M,H}$ for S=-0.5 and, say, $Z=50\,\mathrm{M}$, $Z_0=0.1\,\mathrm{M}$, we see that $\lim_{R\to0}^{R}=6.2$ and $Y_M=0.79$, $Y_H=1.4$. That is, Y_M and Y_H represent fairly modest perturbations of the more dominant $\lim_{R\to0}^{R}Z_0$ term. As the instability and roughness increase, the logarithmic term loses its dominance.

C. Formulas for large -Z/L

We shall now take up the problems encountered when we deal with strong instability, that is, $-\S \ge 0.5$. We first derive simple asymptotic expansions for $\Psi_{\text{M},\text{H}}$ that are valid for the general case $\mathcal{C} = (I - \S \S)^{-\beta}$. The method is useful because it clearly shows the behavior of $\Psi_{\text{M},\text{H}}$ and because it can be applied to cases in which $\S_{\text{M},\text{H}}$ are not simple fractions (example: Dyer's earlier relations that use $\S_{\text{M}} = 0.275$, $\S_{\text{H}} = 0.55$). We discuss the problems that can arise for $-\S > I$ for both the approximate and exact solutions in Section D.

To develop simple approximate formulas for $\Psi_{M,H}$ that are valid for

 $-\S \gtrsim 0.5$, we decompose $\Psi(\S)$ into two integrals:

$$= \lim_{\kappa_0 \to 0^+} \left[\int_{\kappa_0}^{\infty} - \int_{\kappa}^{\infty} \right] \left[1 - (1 + \kappa')^{-\beta} \right] \frac{d\kappa'}{\kappa'(2.39)}$$

where $\chi = -\chi \neq /L$.

 $\Psi(\S)$ can also be written as

$$\Psi(A) = I_1(A_0) - I_2(A)$$
 (2.40)

in which

$$I = \lim_{r \to \infty} \lim_{r \to \infty} \hat{I}, \quad S \quad I_2 = \lim_{r \to \infty} \hat{I}_2 \quad (2.41)$$

where

$$\hat{I}_{1}(N_{0};r) = \int_{N_{0}}^{r} \frac{dy'}{R'} \left[1 - (1 + N')^{-\frac{6}{2}} \right]$$
(2.42)

and

$$\hat{\Gamma}_{2}(x;r) \equiv \int_{\mathcal{K}} \frac{dx'}{x'} \left[\left[-(1+x')^{-6} \right] \right]$$
(2.43)

We first focus our attention upon $\widehat{\mathbb{T}}_1$. We add and subtract $\gamma^{-1} \in \widehat{\mathbb{T}}_1$ to $\widehat{\mathbb{T}}_1$, in order to create integrals \mathbb{T}_{a} , \mathbb{T}_{b} :

$$I_{1} = \lim_{r \to \infty} \lim_{x_{0} \to 0} \int_{R_{0}}^{r} \frac{1 - (1 + x')^{-s}}{R'} dx'$$

$$= J_{0} + J_{0} = \lim_{r \to \infty} \lim_{x_{0} \to 0} \int_{R_{0}}^{r} \left(\frac{1}{R'} - \frac{e^{-x'}}{R'}\right) dx'$$

+ lim lim
$$\int_{\gamma_0}^{\gamma_0} \left[\frac{e^{-\chi'} - (1+\chi')^{-\frac{6}{9}}}{\chi'} \right] d\chi'$$
. (2.44)

The presence of $\Psi^{-1}e^{-\Upsilon}$ prevents $\widehat{\mathbb{I}}_+$ from diverging logarithmically as $\chi_0 \to 0$, but it will not thwart the divergence of J_0 as $Y \to 0$. We recognize the second term in J_0 as the defining expression for the exponential integral function, E_0 (u) (Arfken, 1985),

$$E_{1}(u) = \int_{u}^{\infty} \frac{e^{-t}}{t} dt, \qquad (2.45)$$

that for small u is given by the series

$$E_{1}(u) = -\widetilde{\delta} - \ln u + \sum_{m=1}^{\infty} \frac{(-1)^{m} u^{m}}{m n!}$$
 (2.46)

Here $\widetilde{\delta}$ is the Euler-Masheroni constant defined by

$$\widetilde{\mathcal{S}} = \lim_{m \to \infty} \left(\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{m} \right) - \ln m \right)$$
(2.47)

 $\dot{=}$ 0.577 215 665. Note that both the harmonic series $(+\frac{1}{2}+\frac{1}{3}+\frac$

$$J_{\alpha} = \lim_{\kappa_0 \to 0} \lim_{\kappa_0 \to \infty} \ln(r/\kappa_0) + \widetilde{\delta} + \ln \kappa_0$$

$$= \lim_{\kappa_0 \to \infty} \ln r + \widetilde{\delta} \qquad (2.48)$$

We are left with one logarithmic divergence in the evaluation of \mathcal{J}_α . This constitutes no special problem, as we shall see.

We now examine

$$J_{b} = \lim_{\gamma \to \infty} \int_{\gamma_{o}}^{\infty} \left[\frac{e^{-\gamma'} - (1 + \gamma')^{-\beta}}{\gamma'} \right] d\gamma'$$
(2.49)

We begin by writing the integral expression for the gamma function $\Gamma(\omega)$ as

$$ln\Gamma(u) = \int_{0}^{\infty} dt \left[\frac{u-1}{t} e^{-t} - \frac{e^{-t} - e^{-ut}}{t(1-e^{-t})} \right]$$
 (2.50)

which is then differentiated to get,

$$\frac{d}{du} \ln \Gamma(u) = \int_{0}^{\infty} \left[\frac{e^{-t}}{t} - \frac{e^{-u^{+}}}{(1 - e^{-t})} \right] dt$$
 (2.51)

which of course is the same as $[1/\Gamma(u)][d\Gamma(u)/du]$. This logarithmic derivative is the definition of the Euler 'diagram' or 'psi' function (Gradshteyn and Ryzhik, 1965):

$$\overline{T}_{E}(u) = \frac{d\Gamma(u)}{\Gamma(u)} \frac{d\Gamma(u)}{du} = \int_{0}^{\infty} \left[\frac{e^{-t}}{t} - \frac{e^{-ut}}{(1-e^{-t})}\right] dt \qquad (2.52)$$

Let us now rewrite the second term of $J_{\mathbf{b}}$

and change variables: $u
ightarrow e^{ ext{t}} - ert$. This change yields

$$\int_{0}^{\infty} \frac{1}{x} (1+x)^{-\mu} dx = \int_{0}^{\infty} \frac{e^{-ut}}{(1-e^{-t})} dt$$
 (2.53)

an equality that permits us to write

$$T_b = \Psi_E(\beta) = \int_0^\infty \left[\frac{e^{-\chi} - (1+\chi)^{-\beta}}{\chi} \right] d\chi. \qquad (2.54)$$

Thus, J_k is simply equal to the Euler digamma function. Certain values of the digamma function have been tabulated; values of particular interest to us are,

$$\Psi_{E}(1/2) = -\tilde{\chi} - 2 \ln \chi = -1.963510026$$

$$\Psi_{E}(1/4) = -\tilde{\chi} - \frac{\pi}{2} - 3 \ln 2 = -4.227453534$$
(2.55)

$$\Psi_{E}(1/3) = -\hat{8} - \frac{\pi}{2}\sqrt{\frac{1}{3}} - \frac{3}{2}\ln 3 = -3.132.033.782.$$

Let us now turn our attention to \hat{T}_2 and \hat{T}_2 . To approximate these functions, we need only to expand $\hat{\hat{T}}_2$,

$$\hat{T}_2 = \int_{\chi}^{\gamma} \frac{1 - (1 + \chi')^{-\beta}}{\chi'} d\chi'$$

$$= \int_{\alpha}^{r} \frac{d\alpha'}{\alpha'} \left[1 - \alpha'^{-\beta} \left(1 + \frac{1}{\alpha} \right)^{-\beta} \right], \qquad (2.56)$$

If we require that q>1, we can write

$$\hat{T}_{2} = \int_{\mathcal{X}}^{r} \frac{dx'}{x'} \left\{ \left[-\frac{\beta}{x'} - \frac{\beta(\beta+1)}{2} \frac{1}{y'^{2}} + \ldots \right] \right\}$$

$$= \lim_{\mathcal{X}} - \int_{\mathcal{X}}^{r} (x; \beta) + \int_{\mathcal{X}}^{r} (r; \beta) \qquad (2.57)$$

in which $\mathcal{S}(t; \beta)$ is the series

$$S(t; \beta) = \frac{1}{\beta} t^{-\beta} - \frac{\beta}{\beta+1} t^{-(\beta+1)} - \frac{\beta(\beta-1)}{2(\beta+2)} t^{-(\beta+2)}$$

$$+ \dots$$
(2.58)

For $\mathcal{C}_{H}(7/L)$ with $\beta = \frac{1}{2}$ we have,

$$\beta(x;1/2) = 2 \chi^{-\frac{1}{2}} - \frac{1}{3} \chi^{-\frac{3}{2}} + \frac{1}{20} \chi^{-\frac{5}{2}} + \dots (2.59)$$

For $\mathcal{C}_{M}(Z/L)$ with $\beta=74$ we get,

$$\beta(\kappa; 1/4) = 4 \kappa^{-1/4} - \frac{1}{5} \sqrt{-\frac{5}{4}} + \frac{1}{24} \sqrt{-\frac{9}{4}} + \dots$$
 (2.60)

The presence of $M \cap T_2$ is precisely what we need to cancel the divergence in J_a . Our final result is the simple expression

$$\Psi(x) = \ln x + S(x; \beta) + \vec{x} + \Psi_{E}(\beta)$$
. (2.61)

Although we have been less than circumspect in our manipulation of limits and divergences, our final expressions can be justified -- they yield correct results.

Explicit expressions for $\Psi_{M}(\S)$ and $\Psi_{H}(\S)$ with $\chi = -167/L$ are given by

$$+2\frac{1}{(-\S)^{1/4}}-\frac{1}{160}\frac{1}{(-\S)^{5/4}}+\frac{1}{12,288}\frac{1}{(-\S)^{9/4}}$$

$$+...,$$
(2.62)

and

$$+\frac{1}{2}\frac{1}{(\S)^{1/2}} - \frac{1}{144}\frac{1}{(-\S)^{3/2}} + \frac{1}{20,480}\frac{1}{(-\S)^{5/2}}$$
(2.63)

or

$$\Psi_{M}(\S) \sim -0.877649147 + ln(-\S)$$
+ $2\frac{1}{(-\S)^{5/4}} - \frac{1}{160}\frac{1}{(-\S)^{5/4}} + \frac{1}{12,288}\frac{1}{(-\S)^{9/4}} + \cdots,$ (2.64)

 $\Psi_{H}(\S) \sim 1.386294361 + ln(-\S)$
+ $\frac{1}{2}\frac{1}{(-\S)^{5/2}} - \frac{1}{144}\frac{1}{(-\S)^{3/2}} + \frac{1}{20,480}\frac{1}{(-\S)^{5/2}} + \cdots$ (2.65)

Relations (2.64) and (2.65), along with shorter versions in which first the $(-\S)^{-5/2}$ term and then the $(-\S)^{-5/2}$ terms are omitted, are shown in Tables 2 and 3. As expected, the accuracy of the asymptotic relations improves as $(-\S)$ increases and if the $(-\S)^{-3/2}$ and $(-\S)^{-5/2}$ terms are included in the sum. We see that $\Psi_{N,H}^{(3)}$ are accurate within about 1.7% or less for $-\S>0.25$, and $\Psi_{M,H}^{(1)}$ within about 1.8% or less for $-\S>0.50$. Accordingly, $\Psi_{M,H}^{(1)}$ will be adopted as adequate approximations to $\Psi_{M,H}$ for steng instability, that is, for $-\S>0.50$.

Table 2. Comparison of the exact values of $\Psi_{M}(\S)$ with the approximate values calculated from Eq. (2.64) with the $(-\S)^{-N_{4}} (= \Psi_{M}^{(3)}) ; (-\S)^{-5/4} (= \Psi_{M}^{(2)}) ; (-\S)^{-1/4} (= \Psi_{M}^{(1)})$ terms.

- §	Yexact	Ψ ⁽³⁾	Ψ ⁽²²⁾	ΨΜ
0.005	0.01952	8.886	-3.356	1.345
0.01	0.03815	1.439	-1.135	0.8417
0.05	0.1636	0.1606	0.09176	0.3561
0.1	0.2836	0.2797	0.2652	0.3763
0.25	0.5319	0.5310	0.5291	0.5645
0.5	0.7934	0.7931	0.7928	0.8076
1.0	1.116	1.116	1.116	1.112
2.0	1.495	1.495	1.495	1.497
5.0	2.068	2.068	2.068	2.069
50.	3.786	3.786	3.786	3.786

Table 3. Comparison of the exact values of $\Psi_{M}(\S)$ with the approximate values calculated from Eq. (2.65) with the $(-\S)^{-9/4} \left(=\Psi_{H}^{(3)}\right) ; \left(-\S\right)^{-5/4} \left(=\Psi_{H}^{(2)}\right) ; \left(-\S\right)^{-1/4} = \left(=\Psi_{H}^{(i)}\right) \text{ terms.}$

			시작에 얼마나는 내가 가지다.	
-5	Yexact	Y(3)	Y(2)	Ψ(1)
0.005	0.03885	11.14	-16.48	3.159
0.01	0.07559	-0.2805	- 5.163	1.781
0.05	0.3154	0.09285	0.005500	0.6266
0.1	0.5343	0.4607	0.4452	0.6648
0.25	0.9624	0.9460	0.9444	1.000
0.50	1.386	1.381	1.381	1.400
1.0	1.881	1.879	1.879	1.886
2.0	2.431	2.431	2.431	2.433
5.0	3.219	3.219	3.219	3.219
50.	5:369	5.369	5.369	5.369

D. Preparing the Formulas for Use in NWP Models

The boundary layer relations that we have examined must be applicable to regions of extreme variations in instability and roughness in order to be useful in NWP models. NWP models often exhibit far stronger variations in z_o and L than would be expected in boundary layer field experiments. While it is expecting too much for standard boundary layer relations to yield accurate results for all modeling conditions, it is reasonable to expect that the relations will at least not degrade model performance.

Fortunately, the application of the new relations is usually straight-forward. The steps are:

- 1) R_B is calculated from (2.5).
- 2) \S_N is calculated from (2.22).
- 3) $\Psi_{M}(\S_{N})$ and $\Psi_{H}(\S_{N})$ are computed from (2.37) and (2.38) for $-\S_{N} \leqslant \mathfrak{o} \cdot \S$ and from (2.64) and (2.65) for $-\S_{N} \geqslant \mathfrak{o} \cdot \S$.
- 4) Approximate F_{M} and F_{H} from

$$F_{M,H} = ln \frac{h}{z} - Y_{M,H} (\xi_N).$$
 (2.66)

- 5a) Estimate U_* and θ_* from (2.8) and (2.9).
- 5b) Alternatively, compute the momentum, heat, and humidity transfer coefficients from

$$C_{M} = R^{2} F_{M}^{-2} ; C_{H,Q} = R^{2} (F_{M} F_{H})^{-1}$$
 (2.67)

6a) Compute the fluxes T_{H} and T_{H} using (1.7) and (1.8). The latent heat flux T_{Q} is calculated from (1.9) and the relation,

This formula for \P_st follows from $\mathscr{Q}_{\mathbb{Q}}=\mathscr{Q}_{\mathsf{H}}$ and the extension of (2.8) and (2.9) to $\Delta \, \P$.

6b) Alternatively, $\mathcal{T}_{M,H,Q}$ can be calculated from

$$F_{\alpha} = -\rho C_{\mu} U^{2}$$

$$F_{\alpha} = -\rho C_{\mu} C_{\mu} U \Delta \Theta \qquad (2.69)$$

$$F_{\alpha} = -\rho \mathcal{L} C_{\mu} U \Delta \beta.$$

Steps (5a, 6a) and (5b, 6b) give the same results and merely differ in form.

By contrast, the MRF follows this procedure:

- I.) The same as 1.)
- II.) § is calculated by iteration. The 'exact' relation (2.21) is solved using Newton's method to an 'accuracy' that is substantially greater than needed.
- III.) $\Upsilon_{M,H}(\S,\S_o)$ are computed from $\Upsilon_{M,H}(\S,\S_o) = \Upsilon_{M,H}(\S)$ $-\Upsilon_{M,H}(\S_o)$ which uses (2.19) and (2.20). Note that $\Upsilon_{M,H}(\S_o)$ are not neglected.
- IV.) $C_{M}(\S_{3}\S_{o})$ and $C_{H}=C_{Q}(\S_{3}\S_{o})$ are computed from

$$C_{M}(\S,\S_{o}) = \mathbb{R}^{2} \left[ln \left(\frac{h}{z_{o}} \right) - \Psi_{M}(\S,\S_{o}) \right]^{-2}$$
 (2.70)

$$C_{H}(\S,\S_{o}) = \S^{2} \left[ln \left(\frac{h}{Z_{o}} \right) - \Psi_{M}(\S,\S_{o}) \right] \left[ln \left(\frac{h}{Z_{o}} \right) - \Psi_{H}(\S,\S_{o}) \right] (2.71)$$

We see that $\Psi_{M,H}$ and $\Psi_{M,H}$ increase as -§ increases; accordingly, $C_{M,H,Q}$ increase without limit with increasing instability.

E. Physical and Computational Limitations

The steps outlined above prompt questions about the limits of accuracy of the approximations as well as the limits of suitability of the 'exact' relations. The first question concerns the capacity of either the approximate or 'exact' solutions to give reasonable fluxes where h is not much larger than \mathbb{Z}_{\circ} . The second question concerns the fidelity of the exact solution and the possible breakdown of the approximate solution when -\$ is large (>>\). The third question is: Of what use is the approximate solution when -L is not much larger than \mathbb{Z}_{\circ} (and perhaps even smaller

than $\chi_{\rm o}$). These questions are related, of course, and they have no completely satisfactory answers at present. We shall suggest several rather pragmatic provisional solutions.

First question. It is known that the logarithmic wind law is not valid for $Z\sim Z_o$. It is also knownthat for both smooth and moderately rough surfaces with $Z/Z_o \gtrsim 100$ that the logarithmic wind law is valid for both laboratory (wind tunnel) and atmospheric measurements. Following Garratt (1980), we denote by Z_{χ} the lowest Z for which the profile laws are approximately valid for neutral and unstable lapse rates. Tennekes (1973) has suggested for the neutral case that $Z_{\chi} \approx 10-100 \ Z_o$. The region $Z \sim Z_{\chi}$ is Garratt's 'r'oughness sublayer'.

At heights much lower than $\frac{1}{2}$ the individual roughness elements can be 'sensed' as the result of turbulent wakes created by flow around individual elements. This violates the similarity conditions that lead to the conventional flux-profile law by forcing a length scale $\left(\frac{1}{2}\right)$ in addition to be used in determining $\mathcal{Q}_{\text{M,H}}$. Wind tunnel data suggest that the wakes of individual elements propagate to heights several times (say, ~4) the heights (h_o) of the average roughness element. If we use as a crude rule-of-thumb that $\mathcal{Z}_o \sim h_o/10$, then the minimum height for the profile laws to be valid is $\mathcal{Z}_{+} \sim 40~\mathcal{Z}_o$.

Garratt's (1980) analysis of data from two "flat, very rough, tree-covered terrain" sites suggests that $Z_{+} \approx 35 Z_{o}$ for momentum and that $Z_{+} \approx 100 Z_{o}$ for heat. This is a disconcerting result. It means that if the largest roughness lengths in the MRF are, say, $Z_{o} \approx 10 \,\mathrm{m}$, then the standard profile laws do not apply to heights below $\approx 350 \,\mathrm{m}$ for momentum and $\approx 1000 \,\mathrm{m}$ for heat (and, presumably, humidity). Both heights are as great as or greater than the heights of the lowest (surface) layers of most NWP models and render invalid, or at least call into question, the surface fluxes.

In our calculations, we shall take a less restrictive position and assume that the surface profile laws are valid provided:

 $h>10\,\%$. If we encounter points where $\Xi_o>h/10$, then we will decrease Ξ_o so that we satisfy the condition $\Xi_o=h/10$.

Second question. The Businger-Dyer-Hicks profile laws are thought to be reasonably accurate for $-\frac{7}{2}/\frac{1}{2}$. Model computations, however, can create unstable conditions that significantly exceed this moderate limitation. For these cases, computed fluxes can be completely unreallistic.

Consider the following situation: $\not\equiv_{\circ}$, \triangle_{\circ} , \triangle_{Θ} , and h are held constant while U is progressively decreased. Decreasing U to U \rightarrow o rapidly increases $\vdash R_B$ and $\vdash \S$. When $\vdash \S$ increases, $\not\vdash P_M$ and $\not\vdash P_M$ increase (see Tables 2 and 3). This decreases $\vdash F_M$ and $\not\vdash P_M$ which, in turn, increases $\not\vdash P_M$ and $\not\vdash P_M$ which, in turn, increases $\not\vdash P_M$ and $\not\vdash P_M$ which, in turn, increases $\not\vdash P_M$ and $\not\vdash P_M$ which, in turn, increases $\not\vdash P_M$ and $\not\vdash P_M$ which, in turn, increases $\not\vdash P_M$ and $\not\vdash P_M$ which, in turn, increases $\not\vdash P_M$ and $\not\vdash P_M$ the decrease in U exceeds the increase in $\not\vdash P_M$, thereby decreasing the fluxes of momentum, heat, and humidity. This situation is typified by Case A of Table 4. The near neutral condition, $- \not\vdash P_M$ with the strongest wind ($\not\vdash P_M$ and $\not\vdash P_M$ with the weakest unstable condition of Case A, $- \not\vdash P_M$ with the weakest wind ($\not\vdash P_M$ of $\not\vdash P_M$), produces the weakest flux. (Note: the heat flux in K m/s can be converted to W/m² by multiplying by $\not\vdash P_M$ and $\not\vdash P_M$ by $\not\vdash P_M$ by multiplying by $\not\vdash P_M$ and $\not\vdash P_M$ by $\not\vdash P_M$ by multiplying

Case A with $Z_0 = 0.01$ m is typical of boundary layer field sites. Cases B, C, and D with $Z_0 = 1$ m , 10 m

Table 4. Momentum ($\cup_{\frac{1}{2}}^2$) and temperature fluxes ($-\cup_{\frac{1}{2}}$) for a wide range of wind speeds, temperature differences, and roughness lengths.

	Δ						
U (m/s)=	23.9	7.48	5.25	3.68	2.29	1.60	0.687
-L (m)=		100	50	25	10		1
_7 / =	0.05	0.5	1.0	2	5	10	50
- 元 () =	0.00001	0.0001	0.0002	0.0004	0.001	0.002	0.002
11 1 1 2 1 - 2 1 -	1 3 N	0.150	0.086	0.0439	0.0202	0.0114	0.0332
$-u_{*0}(K m/s) =$	0.111	0.0434	0.0342	0.0275	0.0214	0.0182	0.0143
-0*0*C							
		10 12 25 July 15 24 19 11 25 July 16 25 19 19 19 19					
	<u>B</u> 16.2	5.06	5.56	2.50	1,57	1.11	0.493
		100		2.50 25		5	1
above		0.5	1.0	2	5	10	50
above	0.001	0.01	0.02	0.04	0.100	0.20	
		0.411	40、大大大块的,以作为10、大型,并发展的10、10。	0.153	0.0872	0.0589	
		0.197	0.182	0.180		0.214	
	<u>c</u>						
	10.4	3.28	2.31	1.63	1.03	0.729	0.326
	1000	100	50	25	10	5	1
aboue	0.05	0.5	1.0	2	5	10	50
	0.01	0.10	0.20	0.40	1.0	2.0	10.0
	7.81	1.41	0.935	0.637	0.394	0.276	0.123
	1.63	1.26	1.35	1.52	1.85	2.17	3.21
	<u>D</u> 12.4	3.85	2.70	1.90	1 10	0 000	0 272
	1000	100	2.70 50	1.90 25	1.18	0.838 5	
		1.0	2	4	10 10	20	100
abave	0.001	0.01	0.02	0.04	0.1	0.20	
	1.31	0.01	0.02	0.0724		0.20	and the first of the control of the
	0.112	0.191	0.0586	0.0724	And the state of t		0.0120
	V• + 1 2	0.0023		9.0303	0.0029	0.0701	0.0980
	도 1일 - 교통에 대통령하다 19 - 일 기업 기업 기업 기업						
	A: Z ₀ = 0.01 m B: Z ₀ = 1 m		; ∆⊖ =	2 -2 K 3	h = 50 M		
			: A 0 =	-2K;	h= 50 m		
	이렇게 되었다는 이렇는 이렇?	흥미 중요하는 요시는 이번 하다 하다.					
	c: 7,=	lom	; ΔΘ =	-2K ;	h = 50 m		
기, 종교 기급 등 경기가 가득하다							

were examples of areas of extreme roughness found in NWP models. It is with Cases B, C, and D that we encounter computational and physical difficulties.

In all cases the surface stress decreases with increasing - h/L. In sections B, C, D we observe a clurious behavior, however, as the windspeed decreases, the heat flux decreases, reaches a minimum, and then increases. This is counter-intuitive. Case C with $Z_0 = 10 \, \text{m}$ is particularly extreme. The lowest wind speed, $V = 0.33 \, \text{m/s}$, produces the highest heat flux, $3.1 \, \text{km/s}$ ($\approx 3900 \, \text{W}^{-2}$), about three times the solar constant. We seek to eliminate these runaway heat fluxes. Although it may appear that Y_{m} and Y_{H} , (both increasing functions), eventually equal and then exceed M_{h}/Z_0 , causing the fluxes to become infinite and then reversing sign, this is not the case. From (2.6 - 2.9), it follows that $Y_{\text{m}, \text{H}}$ approach, but never equal or exceed, zero.

On the otherhand, $\Psi_{M,H}$ are only approximations to $\Psi_{M,H}$. For large enough -S, $\Psi_{M,H}$ will equal and then exceed $M h/Z_b$, causing the computed fluxes to blow-up and then reverse sign. These nonsensical and useless results can be prevented, as we will see.

Consider the smallest allowed value of h/Z_o , that is,

For very small $-\S: \forall_{\mathsf{H}} = -8\ \S$, $\forall_{\mathsf{M}} = -4\ \S$ (see 2.35, 2.36). For very large $-\S: \forall_{\mathsf{H}} \sim \mathsf{Eq.}$ (2.65), $\forall_{\mathsf{M}} \sim \mathsf{Eq.}$ (2.64). Since for large $-\S$, and noting that $\ln (h/z_o)_{\min} = \ln |_{0} = 4.3$ and also that $\forall_{\mathsf{H}} \sim 1.39 + \ln(-\S) + \frac{1}{2}(-\S)^{-1/2}$, setting \forall_{H} equal to $\ln (h/z_o)_{\min} = \left(\frac{h}{z_o} \right)_{\min} = \left(\frac{\S}{z_o} \right)_{\max} = \left(\frac{\S}{z_o} \right)_{\max}$, we get $\S = -1.7$ This means $-\S = 1.7$ is the largest value of instability we can use and be assured that C_{H} (Eq. 2.67) does not blow-up. This limitation is unacceptable.

There are several artifices that can be employed to avoid some of these problems. None of these devices can be fully justified, however, by appealing to field data. One artifice invokes free convection. There are at least four ways that this can be done. First, Deardorff's (1972) convective velocity scale W_{\bigstar} can be 'switched on' whenever the values of $C_{\texttt{M}} \gtrsim 4 \, C_{\texttt{M}}$ (neutral) and $C_{\texttt{H}} \gtrsim 6.4 \, C_{\texttt{H}}$ (neutral). The convective velocity scale is $W_{\bigstar} = (9 \, f_{\texttt{H}} \, H/\rho \, C_{\texttt{p}} \, \tilde{\theta})^{\frac{1}{2}}$ in which H is the height of the convective boundary layer. Second, free convection can be introduced by fiat by forcing the velocity dependence to drop out of the calculation of $f_{\texttt{H},Q}$ whenever -\$ or $-\mathsf{R}_{B}$ exceeds a specified number. Third, the Businger-Dyer-Hicks flux-profile laws can be used for $-\$ \leqslant C_{e} = \text{constant}$, where C_{c} is on the order of unity. For $-\$ > C_{e}$, we use

 $\mathcal{C}_{M} = -b_{M} \xi^{-\frac{1}{3}}$ and $\mathcal{C}_{H} = -b_{H} \xi^{-\frac{1}{3}}$, in which $b_{M,H}$ are positive constants. Fourth, flux-profile laws can be used that embrace free convection as an asymptotic limit. The KEYPS (or O'KEYPS) equation is a well known example of this.

Invoking Deardorff's mixed layer scaling to limit runaway $\Gamma_{H,Q}$ involves several assumptions relating to $\Gamma_{H,Q}$. It is assumed that U can be approximated by $\approx .7 \, \text{W}_{*}$, and that $C_{M}^{*} \equiv 4 \, C_{M}^{*}$ (neutral) and $C_{H}^{*} = 4.6 \, C_{M}^{*}$ (neutral). This leads to

$$F_{H} = \rho C_{\beta} C_{\alpha}^{*} (9H/\bar{\theta})^{\frac{1}{2}} |\Delta \Theta|^{\frac{3}{2}}$$

$$F_{M} = \pm \rho C_{M}^{*} (9HF_{H}/\rho C_{\beta}\bar{\Theta})^{\frac{2}{3}}$$
(2.72)

We see that the surface heat flux depends upon $|\triangle 0|^{3/2}$ and that there is no longer a need to compute $R_{B_j} \xi_j \Psi_{M,H}$ and $F_{M,H}$.

Introducing free convection by fiat is rather direct. We assume that

$$F_{H} \sim A \rho C_{b} \cup \Delta \Theta (-R_{B})^{M}$$
(2.73)

where A and M are constants. To force U to vanish, we choose M=1/2. The result is

$$F_{\mu} \sim A \rho C_{\beta} \left(\frac{9h}{\overline{\Phi}} \right)^{\gamma_{2}} |\Delta \Theta|^{3/2}$$
 (2.74)

Deardorff's result is similar, except H and h are interchanged. Carson (1982) also gives a free-convection result. For $h>77_{e}$, his expression is

$$F_{H} \sim A' \rho C_{\beta} \left(\frac{9 Z_{o}}{\bar{\Theta}}\right)^{\frac{1}{2}} |\Delta \Theta|^{\frac{3}{2}}. \tag{2.75}$$

This result shares the $|\Delta\Theta|^{\frac{3}{2}}$ dependence with the two previous expressions. The difference is the length scale \mathcal{F}_{0} . The third method takes note of Wyngaard, et al. 's remark that $|\Psi_{H}(\S)| \approx 0.23 (-\S)^{\frac{3}{2}}$ (see 1.18) for $0.5 \le -\S \le 2$. We speculate that this $-\frac{3}{2}$ law also holds for all $-\frac{5}{2} \ge 2$ and

also that $\mathcal{P}_{M}(\S) \sim b(-\S)$ holds for $-\S>_0.5$. After integration from $\not\equiv_s$ to h, we have

$$\Psi_{M,H}(\S,\S_{6}) = \int_{Z_{0}}^{Z=h} \frac{dZ'}{Z'} \left[1 - Q_{M,H}(Z'/L) \right]$$

$$= \Psi_{M,H}(-0.5; -0.5 \frac{Z_{0}}{Z}) + ln(-\S) + ln.2 \qquad (2.76)$$

$$+ 3 b_{M,H} \left[\frac{1}{(-\S)^{3}} - \frac{1}{(.5)^{3}} \right] - \S > 0.5;$$

where $b_{M,H} = consts$.

Our method for dealing with large -§ and \mathbb{Z}_s will not involve invoking free convection but by simply limiting $\Psi_{M,H}$ (§) and $\Psi_{M,H}$ (§).

$$m \not\in 2 \circ - \bot$$
 when $m \approx 2 \circ - 5 \circ$. (2.77)

That is, a minimum can only appear when \mathbb{Z}_s begins to approach the size of -L,

$$-\frac{7}{2}$$
 $\left(\frac{1}{m}\right)$ (2.78)

To avoid the problem of runaway heat and humidity fluxes, we choose

$$\max \{ \frac{7}{2}, \frac{1}{2} \} = \frac{1}{50}$$
 (2.79)

This choice has the added advantage of assuring us that $\Psi_{M,H}(\xi_0)$ can be neglected in comparison to $\Psi_{M,H}(\xi)$.

To achieve the restriction on $\{Z_6/L_1\}$, we simply increase -L. We do this by increasing U so that $\{Z_6/L_1\} = \frac{L}{50}$ is satisfied. This change decreases C_{H_1,Q_1} so that the possibility of runaway heat and moisture fluxes is avoided.

F. Summary

A simple, economical method has been derived for computing the surface layer fluxes of momentum, heat, and humidity. The functions involved in the computation have been simplified and split into two categories. The categories correspond to: weak and mild instability; strong instability. Pade - like functions have been derived for the first case. Asymptotic functions have been derived for the strongly unstable case.

To avoid unreasonable fluxes, two restrictions are $p_{1\lambda}$ ced on the use of the method. The first restriction is invoked when $z \to Z_+$, that is, when the surface similarity relations are forced to apply to the 'roughness sublayer'. The second restriction is applied whenever the surface layer becomes so unstable that $-L \to Z_{\circ}$. Physically and computationally plausible reasons for the restrictions are presented.

REFERENCES

- Arfken, G., 1985: <u>Mathematical Methods for Physicists</u>, <u>Third Edition</u>. Academic Press, Inc., Orlando. 985 pp.
- Bender. C. M. and S. A. Orszag, 1978: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill Book Comp., New York. 593 pp.
- Businger, J. A., J. C. Wyngaard, Y. Izumi and E. F. Bradley, 1971: Flux profile relationships in the atmospheric surface layer. <u>J. Atmos. Sci.</u>, 28, 181-189.
- Carl, D. M., T. C. Tarbell, and H. A. Panofsky, 1973: Profiles of wind and temperatures from towers over homogeneous terrain. <u>J. Atmos. Sci.</u>, 30, 788-794.
- Carson, D. J., 1982: Current parameterizations of landsurface processes in atmospheric general circulation models. Land Surface Processes in Atmospheric General Circulation Models. P. S. Eagleson, Ed., Cambridge Univ. Press, Cambridge. 67-108.
- Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. <u>J. Atmos. Sci., 29</u>, 91-115.
- Dyer, A. J., 1974: A review of flux-profile relations. Bound. Layer Meteor., 1, 363-372.
- Dyer, A. J., 1967: The turbulent transport of heat and water vapour in an unstable atmosphere. <u>Quart</u>. <u>J</u>. <u>Roy</u>. <u>Meteor</u>. <u>Soc</u>., <u>87</u>, 401-412.
- Garratt, J. R., 1980: Surface influence upon vertical profiles in the atmospheric near-surface layer. <u>Quart</u>. <u>J</u>. <u>Roy. Meteor</u>. <u>Soc.</u>, <u>106</u>, 803-819.
- Gradshteyn, I. S. and I. M. Ryzhik, 1965: <u>Table of Integrals</u>, <u>Series and Products</u>, Fourth Edition. Academic Press, Inc., New York. 1086 pp.
- Hicks, B. B., 1976: Wind profile relationships from the 'Wangara' experiment. <u>Quart</u>. <u>J</u>. <u>Roy</u>. <u>Meteor</u>. <u>Soc</u>., <u>102</u>, 535-551.
- Panofsky, H. A., 1978: Matching in the convective planetary boundary layer. <u>J. Atmos. Sci.</u>, <u>35</u>, 272-276.
- Tennekes, H., 1973: A model for the dynamics of the inversion above a convective boundary layer. <u>J. Atmos. Sci.</u>, 30, 558-567.

Wyngaard, J. C., W. T. Pennell, D. H. Lenschow, and M. A. LeMone, 1978: The temperature—humidity covariance budget in the convective boundary layer. <u>J. Atmos. Sci., 35</u>, 47-58

Wyngaard, J. C. and O. R. Coté, 1971: The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. <u>J. Atmos. Sci.</u>, 28, 190-201.

Yaglom, A. M., 1977: Comments on wind and temperature flux-profile relationships. <u>Bound</u>. <u>Layer Meteor</u>., <u>11</u>, 89-102.